“Just how far would you like to go?” the enigmatic Frank asks in the sleeve notes to the Dylan album John Wesley Harding. “Not too far,” comes the reply. “Just far enough so we’s can say that we’ve been there.”

Reading maths at the higher levels is akin to poetry – dense, abstract, often impenetrable, albeit with its own rewards. But there are plenty of books out there that offer a digestible taste of the good stuff without talking down to the reader. The Dover series of maths and science books are a case in point, offering insights into a complex and sometimes daunting world but written in an engaging way – not taking you too far, but just far enough.

Read the rest of this entry »

If G. H. Hardy is much thought about these days (and beyond fellow mathematicians, he probably isn’t), it is as much for his dazzling aphorisms as his dizzying flights in the upper reaches of number theory.

“There is no permament place in the world,” he declared, “for ugly mathematics”. This has led to Hardy being characterised as an aesthete in the Wildean mould, compounded by C. P. Snow‘s dark references to his sexuality (in the foreward to Hardy’s autobiographical A Mathematician’s Apology, Snow alludes to “intense affections” for young men, “absorbing … exalted” but – to Snow’s no doubt immense relief – “non-physical”).

But the equivocation is doubly misplaced.

Read the rest of this entry »